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Berry’s phase, Hannay’s angle and quantum normal forms 

I Borsari and E Caliceti 
Dipanimento di Matematic& Universita di Bologna, 40127 Bologna, Italy 

Received 9 &ptember 1992, in final form 1 April 1993 

Abstract For any polynomial permrbation of the generalized harmonic oscillator the Berry 
phase is explicitly computed, in all orders of penurbation theory, as a polynomial in R whose 
term of order zero is the Hannay angle. This wnsrmction is a direct application of the technique 
of quantum normal fom.  

1. Introduction and statement of the results 

The reduction of the .geometrical phase developed by quantum systems upon adiabatic 
variation in external parameters along any closed path 6,  i.e. Berry’s phase [I], to the 
corresponding classical object, i.e. Hannay’s angle [2], has been first established by Berry [3] 
through a quantization fohula  of the Bohr-Sommerfeld type. More precisely, assuming 
that the underlying mechanical system is classically integrable, Beny proved the validity 
of the following semiclassical relation between Hannay’s angle O(l, C) and Berry’s phase 
Y ( C )  

Here 1 is the number of degrees of freedom of the system, I = (11, . . . , I,) the action vector, 
n = (n 1, . . . , n,) the quantum number defining the bound states, related to the actions  by 
Bohr-Sommerfeld quantization 1, = (nj + uj)h for j = 1,. . . , I and where U), the Maslov 
index, is one and the same half integer for all j = 1, . . . , I .  

In the particular example of the generalized hannonic oscillator, namely the system with 
one degree of freedom described by the quadratic Hamiltonian 

Ho = $xqZ + 2YqP + Z P Z 1  (1.2) 

where the parameters x ,  y. z have to be considered as slowly varying functions of the time 
I with xz  - yz  > 0, the Bohrdomrnerfeld quantization is exact, and therefore the same is 
trqe for the relation (1.1) between Hannay’s angle and Berry’s phase. . 

The problem of examining the validity of (1.1) beyond the semiclassical approximation, 
i.e. of computing the quantum corrections to it or,’ equivalently, of generating the  full 
semiclassical asymptotics of Berry’s phase beyond the term of order 0 in h, namely Hannay’s 
angle, has been considered in [ G I  and solved, through microlocal analysis methods, in the 
one degree of freedom case; in several degrees of freedom an asymptotic  expansion^ up to 
order h is obtained under the assumption of quantum integrability, namely that the Schrij- 
dinger operator on L2(R’) can be Written as a function of I commuting one-dimensional 
operators. 
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The purpose of this paper is to show that, provided all orders in perturbation theory are 
considered, similar results can also be obtained by a much simpler technique for a large 
class of non-integrable systems. 

More precisely, we consider here the quasi-integrable system defined by any polynomial 
perturbation (of even degree) of the generalized harmonic oscillator in I degrees of freedom, 
i.e. the following Hamiltonian family defined on Rz 

H ( P ,  Q; X, Y ,  Z; E )  := Ho(P, Q; X ,  Y, Z )  + E V ( P ,  Q ;  X ,  Y,  Z) (1.3) 
where the canonical variables P = ( P I ,  . . . , P I ) ,  Q = (91,. . . ,91) are vectors in Rf as well 
as the external parameters X = ( X I ,  ..., X I ) ,  Y = ( y l ,  . . . , y ~ ) ,  Z = (21, . . . 21). E is the 
perturbation strength and 

(1.4) 

I 

HO(P, Q; x, y,  z) := & ~ c [ X k 4 :  f 2yk9kPk + Z k P i ]  
k=l 

zm 
v(P, e; x, Y,  z) = vkl ....& (xs Y ,  z)9f ..'9f 

X I +  ...+* =o 
under the following assumptions: 

(1) V takes positive values on the unit sphere in RI. 
(2) There are no rational relations between the 'frequencies' XkZk -y: 

in the integer, unknowns (vI , . . . , VI) = U E z' 
mk, i.e. the equation 

u , ( x l z , - y : ) + - . " + y ( x r 2 l - y y : ) ~ ( v . o ) = O  

has only the trivial solution V I  =~:~. . = VI = 0. 
In quantum mechanics, the (Weyl) quantization of the classical Hamiltonians (1.3). (1.4) 
yields a family of Schrodinger operators acting in Lz(R1): under the canonical quantization 
rule 9 k  H $, pk H i;x for k = I ,  . . . , I, where $ is the maximal multiplication operator 
by 9 k  in L2(R1) and pk the maximal differentiation operator generated by -%aqk the Schrii- 
dinger operator family T ( E ;  X, Y,  Z) quantizing H ( P ,  Q; X, Y,  Z ;  E )  is defined as follows 

T ( E ;  X. Y ,  2) = To(X, Y ,  Z) + E T I ( P ,  Q; X, Y ,  Z) ( 1.5) 
where TO is the maximal operator in L2(Rf) generated by 

I 

TO(x, Y* z)u = 4 c [ x k F :  + yk$& + Yk&$ + z k 2 1 @  (1.6) 
k=l 

and the perturbation TI is the maximal multiplication operator generated by the function 
V. These definitions make TO and V self-adjoint in L*(R1), as well as, by assumption 
(11, TI, { T ( E )  : E =. 0) if defined on the maximal domain D(T0) f l  D(T,) (see e.g. [7, 
section XIJI.131). Moreover T ( E )  : E > 0 has a discrete spectrum. Assumption (2)  yields 
the simplicity of the spectrum of TO and hence, by the norm resolvent continuity at E = 0 
proved in [8], also of ( T ( E )  : E z 0). which is required to apply the adiabatic theorem of 
quantum mechanics (see e.g. [91). Hence the eigenvalues of T ( E )  can be labelled by the 
same quantum numbers n = (nl, . . . , nf) : nk E N, k = 1,. . . , I  labelling the eigenvalues 

We also recall (see e.g. [7, section XII.51) that under the present assumptions the Ray- 
IeighSchrodinger perturbation theory for both the eigenvalues and the eigenprojections of 
T ( E )  exists to all orders as a formal power series in E, and the same is m e  for the canonical 
perturbation expansion for the Hamiltonian H ( E ) .  We can now formalize the main result 
of the present paper. 

n) = (n + 4, m)tr of TO. 
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Proposition I .  Let H.(E)  and T(c) be as above, and let assumptioris (1) and (2) be fulfilled 
Then: 

(1) The Hannay angle M I ,  C )  admits a formal power~series expansion to all orders of the 
initial point @ ( I ,  C), the Hannay angle of Ho; namely, for any s E M, there are a,k(I, C )  
such that 

eku ,  c) = @cr. c) + C&I, C ) ~ S .  .. (1.7) 

(2) For any quantum numbern = (n1, . . . , nr) the Beny phase yn(C) admits a formal power 
series expansion to all orders of the initial point y,O(c); namely, for any s E pd, there 
are y,(n) such that 

m 

S=l 

(3) For any s E M there are entire functions I F+ r!(I; C) for j = 0,. . . , h ( s  - 1) such 
that, under BohrSommerfeld quantization I = nh 

with 

(1.10) 

Remrks. 
(1) (l.l), (1.9) and (1.10) yield the semiclassical asymptotics for Berry's phase to all orders 
in perturbation theory, namely 

(1.11) 

(2) The proof of the proposition is based on a straightfoward adaptation to the present 
situation of the quantum normal form developed in [lo, 111 (see also [12,13]) as the exact 
quantization of the classical Birkhoff one. This technique essentially allows us to determine, 
to all orders of perturbation theory, all corrections to the Bohr-Sommerfeld quantization 
rule and this makes it possible to~take over directly the argument of Beny valid for the 
generalized hkmonic oscillator recalled above. 
(3) The form (1.3) is the form assumed by any smooth (parameter-dependent) Hamiltonian 
system in I degrees of freedom near any stable, non-resonant equilibrium point provided 
the terms of order at~least 2m + 1 in the Taylor expansion are neglected. 
(4) The quantization condition for the actions appearing in (3),  implied by the &antum 
normal form, is the original BohrSommelfeld one, I = nh, and not the somewhat more 
familiar I = (n + i )h ,  The factor $, the Maslov~index, comes from the WKB connection 
formula which is never used in this context. 
(5) The non-resonance condition assumption (2) not only guarantees the simplicity of the 
spechum of the Schriidinger operator T ( c )  : c 2 0, but is also necessary for the very 
existence of perturbation theory, both classical and quantum, because its violation would 
bring in a zero denominator. 
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In the next section we will prove the ‘classical part’ of the proposition, namely part (I), 
and in section 3 the ‘quantum part’ namely parts (2) and (3) will be proved. 

I Borsari and E Caliceti 

2. Classical normal form. Perturbation expansion of Hannay’s angle 

As already mentioned, the purpose of this section is to prove part (1) of proposition 1. The 
main’ preliminary result in this direction is the construction of a suitable normal form for 
He. To this end, let us first recall the definition of the relevant canonical variables. 

(a) For any k = 1,. . . , l the transformation C 131 

1 
Ik(Pk.9k; xk. Y k ,  zk) = -[xkq? f2ykqkpk + z k d ]  

2Ok 

is a canonical bijection between Rz and R - {0} x TI, whose inverse C-’ is 

The canonical variables (I, 8) = (Ii, . . . , I , ;  81,. . . ,@) are the action-angle variables for 
Ho, and one has by construction 

(b) The well known complex canonical variables (Bargmann variables) corresponding to 
(I, 0) are denoted by (<‘, q’) = (<;, . . . ,ti; q: ,  . . . ,v i )  

<; = &ei0& q; = &e-“. k = 1, . . . , 1 .  (2-4) 

They are obviously complex-conjugates; it is however useful to consider them as 
independent complex variables. The expression of HO in terms of (C‘, q’) is obviously 

(c) The validity and the canonical character of the following transformations relating the 
canonical variables (Q, P) to the complex canonical variables ( ( I ,  q’), and the variables 
((’, q’) to the complex canonical variables (5. q) := (l/fi)(Q+iP, Q-iP) (using obvious 
vector notation) is immediately verifiable 
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12.6) 

(d) By a standard abuse of notation; we denote by 

V(5 ,  q; x, Y. 2) vu, e; x, Y,  z) vw, V I ;  x, Y,  z) 
the potential I.' expressed as a function of the canonical variables (5, q), (I, e), (<', q'). 
respectively, by Ho(<, q) the Hamiltonian HO expressed as a function of (5, q), and therefore 
by H&, 8). H&', q'), ~H,(<, q) the perturbed Hamiltonian when re-expressed in the 
corresponding vmiables. 
(e) We remark that Ho(<, q )  can be written in the form 

where, by (2.7h) 

(2.8b) 

We can now state the preliminary result mentioned above. 

Lemma 1. 'For any N E N there is a canonical ~transfonnation x ~ ,  depending 
holomorphically on the canonical variables and on E, mapping HL(<', q') into the Hamilto- 
nian 

N 

where, as above, HoQ', q') is defined as in Q.5) and 

<$' = (t;q;. . . ., <;IQ. 

(2.9a) 

(2.9b) 
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Remarks. 
(I) (2.9) is the normal form expressed in the canonical coordinates (<I, q'). By the canonical 
transformations (2.l), (2.3, (2.4). (2.6) and (2.7) the canonically equivalent normal forms 
expressed in the canonical coordinates ( I ,  0) and (e, q )  are written as 

I Borsari and E Caiiceti 

K e ( I ,  0) := Ho(I)  + K j ( I ) d  + 0 (eN+') (2.10a) 
j = l  

(2.10b) 

In (2.10~). I = (Il, .... I,)  and Ho(I )  is defined in (2.3). In (2.10b), l (e ,q)  = 
(II(<I, VI) .  . . . , Id<, ,  V I ) )  where I&, qn), k = 1, .. ., 1 is given by (2.86). 
(2) The dependence on the extemal parameters X, Y, Z is not explicitly displayed because 
it is contained in the definition of the canonical variables ( I ,  0) and hence (c', q'), (<, q )  
(see (2.3H2.8b)). 
(3) As we will see later on, the form (2.10~) yields the expansion for Hannay's angle by a 
direct application of Berry's argument, while the form (2.10b) admits the exact quantization 
yielding the quantum normal form. 

Proof. The argument is, as in [ 1 I], a straightforward application of canonical perturbation 
theory generated by the Lie algorithm written in the Bargmann variables. and could 
be omitted; we include it here for convenience of exposition because the pemrbative 
computation of Berry's phase is based on the exact quantization of this procedure. 

The canonical perturbation theory is generated by looking for the canonical 
transformation (<I,  q1) = ,ye(<', q') such that H, o ,ye = K(<'q', E )  where rq' is given 
by (2.9b). (Note that we keep the notation (<I, q') to denote the 'new' canonical variables.) 
The Lie algorithm (see e.g. [14,15]) consists in determining ,ye as the flow of an auxiliq, 
non-autonomous Hamiltonian we(<', 7)') in which E plays the role of 'time'. Given any 
holomorphic observable f (< I ,  q') on e'. and any holomorphic Hamiltonian w(<', q'), 
denote by te the composition operator with ,yG : (4 f)(<', q') = (f o ,y<)(<'. q') and by 
(LU, f)(<', q') = [ f, w)(<', q') the Lie derivative along the flow generated by w. The 
equation to be solved is therefore 

t ,H, = K(<'q ' , e ) .  (2.1 1) 

We remark now that, for any holomorphic observable f we can write 

d -m', v') = rdW. wc))(<', v') = t&,,f)K', q') d€ 
because E is the 'time' and ,yG the flow generated by the Hamiltonian w, 

' =_. IV,W, (2.12) 
d 
-q' = ivrw, 
dc dc 

which takes the initial datum (51, VI) at (<', q') at 'time' e.  Expand now we, tc, K(<'q', E )  
in a (formal) power series of E 

(2.13) 
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whence dr,/d< = C~o&lett: Inserting (2.13) in this last equation and equating the 
coefficients of the resulting powers of E we get 

(2.14) 

so that, expanding both sides of (2.1 1)  

tt KO + tt-I V = Ke e = 1,2, . . . , KO = Ho(r', $1 (2.15) 

whence, by (2.14) 

(2.16) 
1 
- ( H o , w e l + V e = K p  e=1,2, ... e 

(2.17) 

To solve these recurrent equations we look for the Taylor exp&sion (in the ( < I ,  q') variables) 
of the unknownfunctions: given the Taylor expansion of V, 

m 2m 
(2.18a) ,CL r P  ve = vu,,9i; 'O ICL il 'P . VI = v = v& q 

Ir.p=o cl,8=0 

whose construction only involves wj and K j  up to j = 
expansions of wr and Kp 

- 1, the coefficients of the Taylor 

are given by 

(2.18b) 

(2.18~) 

where, as usual a. B  are multi-indices, a = (011,. . . ,a[), ,9 = (PI, . . . ,8) 

i; ,U q !fl = <;a1 . . . d"q;o' . . .,;pi t I #  JC7 - - (<;q;)el . . . (<;q;)*l 

w = (@I, . . . ,q) and (0, (p  - a)) denotes the scalar product between the I-vectors o and 
a - B. Since V is a polynomial, the Taylor series (2.18a,b;) actually reduce to finite sums, 

0 

Proofofproposition 1, part ( I ) .  To apply Beny's argument [3, equation (17)] without the 
slightest change we have only to fe-express the original canonical coordinates (Q, P )  in 
terms of the canonical coordinates (I, 0) in which H6 assumes the normal form (2 .10~) .  
We have immediately 

and the denominators never vanish by &e non-resonance condition. 

. .  - (e. P )  = C-i~o,y6(Jieio., fie-'') (2.19) 
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where C-' is given by (2.2) and the vector notation d e i a  = (&e@, . . . ~ fieie)) has 
been used once more. Now 

I Borsari and E Caiiceti 

(2.20) 

where JV denotes the symplectic gradient. Insertion of (2.19), (2.20) into (18) of [3] yields 
the result, (with the identification dA = surface element in parameter space) 

(2.21) 

and 

(2.22) 

(2.23) 

3. Quantum normal form. Asymptotics of Berry's phase 

We now proceed to the construction of a suitable quantum normal form for the operator 
family T ( E )  along the lines of [ill. We first remark that, since Berry's phase is left invariant 
by any parameter-independent unitary transformation in the Hilbert space (see e.g. [3, 
equation (23)]), we are free to choose the representation of the canonical commutation 
rule. Therefore we will employ the Bargmann representation [16]: this is precisely 
the representation in which the quantum normal form can be constructed as the exact 
quantization of the classical one, written in the (r. q )  variables (equation (2.9b) above). 
Indeed consider for any @ E Lz(Rf) the integral hansform 

where L = ( z , ,  . . . , z / )  E Cf, 2' = + ...+ z:, Q2 = Q: + ...~+ 4:: U is a unitary map 
between L2(Rf)  and the Bargmann space f i  of all entire holomorphic functions U on Cf 
such that 

(3.2) 
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It is well known that f i  yields a representation of the canonical commutation rules in which 
the standard creation and annihilation operators of the harmonic oscillator 

which are nothing else than .the quantization of the classical observable8 (<, q), act as 
multiplication and differentiation operators, respectively 

(3.3) 
aU 

azk 
( t k U ) ( Z )  = Z k U W  ~ (ii-ku)(z),=a-(z). 

Equation (3.3). together with the Weyl quantization rule, yields the canonical quantization 
of any real-holomorphic classical observable f(<, q) as a (formally) self-adjoint operator f 
in 3,. which can be constructed in the following way (see e.g. 117, section 5-21; without 
loss of generality we can assume here 1 = 1) 

(1) Denote by &(AmBn) the symmetric product of the mth and nth powers of 
two non-commuting operators A and B ,  formally defined as the coefficient of 
( ( m  +n)!/m!n!)XmY" in the expansion of ( A X  + BY)'"+", ( X ,  Y )  ER. 

(2) Denote by 2 = i ls(P7)  the symmetric product quantization (as a maximal operator 
in FI) of the classical observable U(<, q) = {"q". 

(3)~Then if 

its canonical (Weyl) quantization T i s  defined as 

(3.4) 

Therefore, denoting by SO@), Sl(h) and S(h, E ) ,  respectively, the unitary images in fi  

So = No(<. q) SI = V S ( E )  = H x i )  + 8. (3.5a) 

under U of the operators TO, TI and T(f i ,  E ) ,  we have 

We further remark that ~~ 

SO(X, Y,  Z) = SACX,, y1.21) @ I @ ~ .  . . c3 I + I @ S,(XZ, y*, 22) @ .  ..I + . . . 
+ I @ . . . '8 s;(X!, Y! ,  2,) (3.5b) 
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where, as above (equation (1.4)) 

I Borsari and E Caliceti 

v(<, 7 ;  x, y, z) vkx ..... kt(X7 y, z)(<l f VI)'' . '.(<I f Vd". 
k,+-+.k,,$2m 

(3.6~) 

We now go on, following [I I] to which the reader is referred for the complete details, to 
the construction of the quantum normal form, i.e. of the Rayleigh-Schrodinger perturbation 
theory through the 'exact' quantization of the classical Lie algorithm recalled above. The 
first step is represented by the construction of the Rayleigh-Schriidinger perturbation theory 
by a procedure formally analogous to canonical perturbation theory. Once more we omit 
to indicate the explicit a dependence on the extemal parameters ( X ,  Y, Z) because it is not 
essential in the following argument. 

In RayleighSchriidinger perturbation theory we want to diagonalize S(f, E) on the 
unperturbed basis by looking for a unitary operator X ,  such that X,S(h. E)X;I = De, 
where Dc commutes with SO. Denoting by = Ji W, dx the self-adjoint generator of 
X,, X ,  = exp(-(i/f2)we) we formally have, for any operator A in 8, the well known 
equations 

1 (3.7a) 

(3.76) 

d -x ,  = --x,w, xo = I 
de fi 

i -X,AX;' d = - X , [ A ,  W,lX;' .  
de h 

To generate the operator RayleighSchrMinger perturbation theory we ser in the sense of 
the formal power series 

(3.8) 

and 

L w , A  = [A, Wj] WO = I  LW, = 0. (3.9a) 

Inserting (3 .9~)  and (3.8) in (3.76) and equating the coefficients of eS on both sides we get 

3 = I d .  (3.96) 
i s  

?; = - C Z - j L w ,  s =  1,2 ,..., 
s h  j = l  

Now set A = So(h) + E V and look for the (formal) power series expansion for D, 

(3.10) 

Then, once more equating the coefficients of the same poweri of E the requirement 
X , S ( k ,  <)X;I = D, easily yields, on account of (3.76). (3.8) and (3.9a,b), the recurrent 
equations 

D~ = s m  ?iso + = or e = i ,  2 , .  . . (3.11~) 
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namely 

i 
. eh -[so, W ~ I + S ~  =De = 1.2, ... 

where 

These equations are in turn easily solved on the orthonormal basis 

{ f n ( z )  : n = (nl, . . . , n,); n k  = 0. 1,. . . , k = 1 , .  . . , I )  

of the eigenvectors of SO 

S o f ,  = Eo(n,h,o) j i  Eo(n,fi,o) =tr[(n,o)+ ;MI. 
We have indeed 

(3.11b) 

(3.12) 

(3.13) 

because Eo(m) = E&) iff m = n bytJe simplicity of  SO) and the sums c0ntd.n only 
a finite number of terms since SI' = V is a polynomial in the &tion and destruction 
operators & and j?k. Therefore we can conclude that the (formal) RayleighSchriidinger 
perturbation theory for the eigenvalues En@ E) of S(fi, E), a id  hence of T f i ,  E), written as 

m 

En@. E) = Eo + Ee(n,h)Ee 
e=]  

exists to all'orders, with 

(3.14) 

Ee(n.h)  = ( f n 3  & f n )  = (f,, Sefn) .  (3.15) 

We are now in position to verify part (2) of proposition i. 

Proof of proposition 1. part (2). Let us consider the perturbed eigenfunctions and examine 
their explicit dependence on .the external parameters (X, Y,  Z). By construction, for any 
N E M  we.have 

~~ 

S @ , ' E ; X , Y , Z ) f ~ ( z , R , € ; X , Y , Z )  

= E;@, E ;  x, Y, Z)f,N(Z, tr ,  E ;  x, Y, Z )  + 0 ( E N + ] )  (3.16~) 

where 
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In fact, since Wu(X, Y, Z) is once more a polynomial in the creation and destruction 
operators, the exponential is well defined on the unperturbed eigenvectors f,(z; X, Y, 2) 
by Taylor expansion and .this gives (3.16~). Now the dependence of V ,  E&, n )  and 
f n ( z ;  X, Y, 2) on (X, Y, 2) is obviously holomorphic; therefore the same is true for the 
dependenceof (fn, Sif,), (fn, W,fm),  and, byrecumnce,forthedependenceof (fn, WefJ 
for t = 2,. . ._ Hence the approximate eigenfunctions f~(z, i 'z ,  E: X, Y, 2) admit Taylor 
expansions in powers of E with coefficients depending holomorphically on (X, Y, 2). Now, 
by [3, equation (23)], the unitarity of the Bargmann transform and (3.16a.b), the phase 
2-form admits the following representation 

v(n;E: x, Y, 2) 

I Borsari and E Caficeti 

-N 
= Imvx.y,zALzfn (z,fi,E; ~ , ~ , ~ ) ~ x . Y . z f , ~ ( z , f i , E ; ~ , ~ . ~ ) d z d i  

(3.16~) 

0 and this. proves the assertion upon expansion in powers of E .  

Remarh. 
( I )  We note for further reference the following expression for the coefficients ys(n, C) of 
the Rayleigh-Schradinger expansion of Berry's phase in terms of V(n; E; X, Y, 2) which 
follows from (3.16~) and 13, equation (20)l: 

(3.164 

where 
1 ds 
s! des 

VJn; X. Y. 2) = Im VX.Y.Z A --lea 

(3.16e) 

(2) The eigenvectors f,(z) of So are related to the standard basis vectors of E ,  defined as 

by a unitary transformation U(X, Y, Z) : f, = U(X, Y, Z)e,. U(X,Y,Z) is the 
quantization of the linear canonical transformation (2.8). and depends holomorphically on 
(X, Y, 2) (for details see [ 16, section 3fl). 

To prove part (3) of proposition 1 we show that the quantum perturbation theory can be 
realized as the exact quantization of the classical one. By this we mean the following: the 
quantum recurrent equations (3.11a,b), (3.12) can be formally obtained from the classical 
ones (2.16) upon replacement of the Poisson brackets by the quantum commutators and of 
the classical observables by their Weyl quantization. The replacement is formal because the 
commutator of two quantized observables does not coincide with the quantization of their 
Poisson brackets. The exact quantization consists precisely in the recursive determination 
of the needed corrections. 

The key preliminary result in this direction is however the verification that, for the 
particular case of the free Hamiltonian, the operations of quantizing and of taking the 
Poisson bracket actually do commute. 
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Le"! 2. Let f (<, v )  be any holomorphic observable defined on C', 7 its (Weyl) 
quantization, and S d X ,  Y, 2) the quantization of the free Hamiltonian H&, r);  X, Y, Z) 
defined in (3.8). Then 

A - [f, &AX', Y, 211 = -%(f, Ho(., X, Y, Z)]. (3.17) 

Proof. We apply the explicit equation [ 11, equations (3.3, (3.6)] for the Moyal bracket of 
two (Weyl) quantized operators f? 2 in 5 corresponding to the holomorphic observables 
f ( t . 3  7 0 3  g(5. r ) )  

(3.18a) 

(3.186) 

Here IaI = f f ~  + .. . + W, IS1 = ,SI + ... + pt. Setting g(<, II) = Ho(<, q; X, Y, Z), by 
U (2.8a.h) it is immediately verified that (f, Ho(., X, Y, Z) } [ j )  = 0 Vj 0. 

We can now easily adapt the recursive arguments of [ll, lemmas 4,5,61 to establish 
the existence of a suitable quantum normal form, namely: 

(3.19b) 

(3.19c) 
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Proof. Lemma 2 shows that the first quantum homological equation (3.11b) is the exact 
quantization of the corresponding classical equation (216). i.e. (once again we omit to 
indicate the explicit dependence on the extemal parameters) 
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Therefore we can repeat the arguments of [ l l ,  lemmas 4.5.61 up to the following variants: 

(1) The classical homological equation (‘40, wl] + V = K l  has to be solved in the ( ( I ,  q’) 
canonical coordinates, which yield a constant coefficient, first-order partial differential 
equation as we have seen in the proof of lemma 1. The solution is then re-expressed in 
the (t, q )  variables through (2.8a,b). 

(2) The same procedure shows that K I ,  and hence by recurrence Ke and also ~ j ’  : e z 1, 
j = 1,. . . ,2m(e - 1) depend on ( 5 , ~ )  only through Il(51, q1). ..., I&, 71). 

0 

A consequence of this normal form is the existence of the semiclassical expansion for 
any term y&z; C) of the Rayleigh-Schrijdinger expansion of Berry’s phase. 

Lemma 4. For any e E N, there exist coefficients y/(n;  C) : j = 0,. . . , h ( e  - 1) such 
that the following expansion holds 

(3.21) 

Proof. Consider the representation (3.16d,e) of yt(n; C). By (3.16b) we have 

ihVx.y.zf:(z, h, E; X ,  Y ,  2) 

Now apply the Baker-Campbell-HausdorFf equation to 

expand the result in power series of E and collect all coefficients multiplying 8. The result 
is 
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Inserting s times 13.18a.b) to compute the sth commutator on account of the quantum 
normal form (3.19b) for W,, and hence for Vx.y.zWj, we eliminate the power and 
each addend GI ,._... k.(X, Y ,  Z) takes the fol'ln 

Ckl ..... k,(X*  y, 2) = f i q ( f n ,  pX,Y.Z(<, q ) f n )  (3.22b) 

for some 4 > 0 and sOme polynomial symbol F X . Y . ~ ( < ,  q )  depending holomorphicauy on 
( X ,  Y ,  Z). Now, by (3.16f) 

Gk, ..... k , ( x ,  y7 2) =f iq (en ,~ - 'p , ,y , z (< ,  q)uen). (3.22~) 

Now, once more by [16, section 3fl (see also the discussion in [17, section 5.1.4]), since 
the Hamiltonians Ho(<, 17) and H&', q') are related through the linear canonical change 
of variables (2.7a), and the basis vectors {e,&) : n E M U {O]']  are the eigenvectors of 
SA := fi(w,, 3). the canonical quantization of H&', q') in the coordinates (<I, q'), the 
operator U-' F x . Y . z ( ~ .  q)U is the quantization of the symbol F(X, Y ,  Z) composed with 
(2.70). which depends holomorphically on ( X ,  Y ,  Z). Namely 

Now the scalar product in the RHS of this last expression is a polynomial in f r ,  with 
holomorphic dependence of the coefficients on X, Y,  Z, by a direct application of lemma 3 
of [I I]. Therefore each addend of the equation (3.16d) for fiyt(n; C) is explicitly displayed 
as a polynomial in f r  with holomorphic dependence of the Coefficients on (X, Y, 2) and this 
proves the assertion. 0 

To conclude the proof of proposition 1 we have to identify the coefficients y,'(n; C )  
with the coefficients I$(nfi; C )  of (1.9) and to prove the relation (1.10). 

Proof of proposition I ,  part (3). TO prove the validity of the expansion (1.9) we have to 
show that the coefficients y,'(n: C) of (3.21) depend on n andR only through the combination 
nfr; in turn, by (3.22) we can limit ourselves to verifying this property on the matrix elements 
Gk ,,._., x , ( X .  Y. Z). Now. once more by [I  I ,  lemma 3, equation (3.13)l we can write 

Gki ..... k , (X ,  y ,  2)  = (en-  %'.Y.Z(~'(<, q ) ,  1)'(<, q); x, r, Z)ed 

where (Fx.y.z)o(l) denotes the zero Fourier coefficient of F X , ~ , ~  re-expressed in the 
variables Ik = < k V k , &  = arg<k, and is the differential operator introduced in [11, 
equations (2.32)-(2.34)] whose definition need not to be recalled here. (3.23) displays the 
desired dependence, and this proves (1.9). 
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To conclude the proof of part (3), let us first identify the coefficient of order zero in h 
in (3.21). By (3.18a,b) the term of order zero in h in (3.22~) has the form 

GiVe(n, 0; X, Y, Z) 

(3.24) 

and, once more by equation (3.13) of 11 I], it is a polynomial in h whose term of order zero 
is 

ihV,"(n; X. Y. Z) = ImVX.y.Z 

A (g [Wkxr t w k 2 ,  (. . ., twk,, VX.Y.Zws1.. .I) (T)/=nTt. 
$=I k,+-+k,=f-s 0 

(3.25) 

(3.26) 

Now, by construction 

Hence the RHS of (3.26) is just the 8th term of the canonical perturbation expansion for 
VX.Y.ZW(E) computed on the canonical coordinates (I, 0). We now remark that, on account 
of the quantization condition, 1, = nxh. we have hart = ant, while, as in (2.22), (2.23). we 
obtain 

The average over 0 is performed by inserting this in the RHS of (3.25). Performing the 
further external differentiation with respect to (X, Y, Z) in (3.25) we can apply without any 
change the original Berry argument [3, equations (15H18), (28)-(30)] to conclude that 

ih8,AV,0(n; X, Y,  Z) 5 a.,v,O(n; X, Y, Z) 5 a & ? ( n ,  C) = &I, c). 

increasing powers of h, and this remark concludes the proof of proposition 1. 
The argument so far exposed can be repeated without changes for all terms multiplying the 

0 
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4. Discussion 

Berry’s geometric phase connects the physical consequences of adiabatic changes to the 
underlying topology in parameter space, and its importance in several areas of physics 
(beyond its natural occurrence in the quantum H a l  effect and in the Bohm-Aharonov 
effect) is well known (see e.g. [18,19]). The Berry phase has a natural classical counterpart, 
the Hannay angle, and therefore determining if and how it reduces to Hannay’s angle in 
the classical limit is an interesting problem of semiclassical analysis, first taken on by 
Berry himself [3]: he established the connection formula (1.1) through Bohr-Sommerfeld 
quantization in the case of the generalized harmonic oscillator (which represents the 
simplest example of a onedimensional system admitting a non-trivial topology’ in the 
parameter space). The Bohr-Sommerfeld quantization, however, is applicable only to 
classically integrable systems, while Hannay’s angle can also be defined for non-integrable 
ones [2O,Zl]. Hence the problem of extending (1.1) to multidimensional systems, which are 
generically non-integrable, and even of determining the very existence of the classical limit 
of Berry’s phase is far from trivial. Existing results are therefore limited to the integrable 
case and hence very partial. 

It is however well known that, under certain circumstances, non-integrable systems 
which can be written as a perturbation of integrable ones, H(6)  = HO + E V ,  admit normal 
forms, i.e. classical perturbation expansion to all orders in E .  Replacing H ( i )  by its normal 
form amounts to replacing H ( E )  through a (canonically equivalent) integrable Hamiltonian 
up to an error of order i.e. having zero asymptotic expansion in E:  For perturbations 
of harmonic oscillators, this normal form~is most, conveniently COtIStructed in the complex 
canonical coordinates (t. q )  := ( I / f i ) (Q  + iP, Q - i f ) .  This last class of systems also 
admits a quantum normal form. Namely, the quantum perturbation theory, in which the 
coefficient of ex is given by the exact quantization of the corresponding classical one. By this 
we mean that we can recursively construct Classical functions f k ( < ,  9 )  : fa(<.,q) = f k ( < .  q )  
such that: 1 

(a) The function (called the~full classical symbol) 

yields the quantum coefficient 8 upon Weyl quantization in the Bargmann 
representation. 

(b) The function f k ( < ,  q )  is the corresponding term of the classical expansion. 

Replacing the quantum operator with its normal form amounts to replacing it with a unitarily 
equivalent one which is diagonal on the unperturbed basis up to an error which has zero 
asymptotic expansion in 6 unNtiformly with respect to f i .  Therefore if we replace the quantum 
and classical Hamiltonians by their normal forms, respectively, we are reduced to comparing 
a diagonal quantum operator with an integrable classical Hamiltonian up to an error having 
vanishing asymptotic expansion independently of h. 

This method, if applicable, yields by construction the correct semiclassical expansion. 
What has been done in this paper is to examine the relation between Berry’s phase and 
Hannay’s angle within this technique. The addition to existing theory obtained here seems 
to be twofold: on one side, the construction of the full semiclassical expansion of Berry’s 
phase to all orders in perturbation theory for a large class of non-integrable systems, and 
on the other side the adaptation of the construction of the quantum normal form to account 
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for the dependence on the parameters needed to compute Berry's phase: in particular this 
requires a verification of the general fact that full symbols in perturbation theory (not only 
the principal ones) related by linear canonical transformations generate unitarily equivalent 
operators upon quantization. 

Since the normal forms are divergent (uniformly with respect to h) the limitations of 
the present result are the usual ones encountered in substituting a formal power expansion 
for the exact solution. Neglecting a remainder term even with zero asymptotic expansion 
in E amounts in classical mechanics to saying that, for E small, all tori will be conserved 
(while we know from KAM theory that some of them disappear no matter how small E is 
taken); in quantum mechanics this amounts to saying that for equally small E all levels can 
b e  somehow approximated by a Bohr-Sommerfeld quantization formula plus corrections in 
ascending powers of A, while we know that some of them do not admit such approximation 
no matter how small E is. On the other hand the elimination of this 0 (em) error would 
require a formulation of KAM theory valid uniformly with respect to h, and to our knowledge 
this problem seems to be completely open. 
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