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Berry’s phase, Hannay"s angle and quantum normal forms

I Borsari and E Caliceti
Dipartimento di Matematica, Universita di Bologna, 40127 Bologna, ltaly

Received 9 September 1992, in final form 1 April 1993

Abstract. For any polynomial perturbation of the gemeralized harmonic oscillator the Berry
phase is explicitly computed, in all orders of perturbation theory, as a polynomial in & whose
term of order zero is the Hannay angle. This construction is a direct application of the technique
of quantumn normal forms.

1. Introduction and statement of the results

The reduction of the geometrical phase developed by quantum systems upon adiabatic
variation in external parameters along any closed path C, i.e. Bemry’s phase [1], to the
corresponding classical object, i.e. Hannay’s angle [2], has been first established by Berry (3]
through a quantization formula of the Bohr—Sommerfeld type. More precisely, assuming
that the underlying mechanical system is classically integrable, Berry proved the validity
of the following semtclasszcal relation between Hannay’s angle 8(J, C) and Berry's phase

(C)

0,(1,C) = 2@ _n©) a.n

any aiy
Here ! is the number of degrees of freedom of the system, f = (Jy, ..., I) the action vector,
n = (n,...,n;) the quantum number defining the bound states, related to the actions by
Bohr—-Sommerfeld quantization I; = (n; + o) for j = 1,...,/ and where o;, the Maslov
index, is one and the same half integer for all j = 1, l

In the particular example of the generalized hamlcmic oscillator, namely the system with
one degree of freedom described by the quadratic Hamiltontan

= 5lxq* +2yqp +2p"] ' - (12)

where the parameters x, y, z have to be considered as slowly varying functions of the time
¢t with xz — y2 > 0, the Bohr—Sommerfeld quantization is exact, and therefore the same is
true for the relation (1.1) between Hannay’s angle and Berry’s phase. -

The problem of examining the validity of (1.1) beyond the semiciassical approximation,
i.e. of computing the quantum corrections to it or, equivalently, of generating the full
semiclassical asymptotics of Berry’s phase beyond the term of order O in 72, namely Hannay’s
angle, has been considered in [4-6) and solved, through microlocal analysis methods, in the
one degree of freedom case; in several degrees of freedom an asymptotic expansion up to
order % is obtained under the assumption of quantum integrability, namely that the Schrd-
dinger operator on LZ(R') can be wntten as a function of / commuting one-dimensional
operators.

0305-4470/93/153805+18807.50 © 1993 IOP Publishing Ltd 3805
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The purpose of this paper is to show that, provided all orders in perturbation theory are
considered, similar results can also be obtained by a much simpler technique for a large
class of non-integrable systems.

More precisely, we consider here the quasi-integrable system defined by any polynomial
perturbation {(of even degree) of the generalized harmonic oscillator in ! degrees of freedom,
i.e. the following Hamiltonian family defined on R¥

H(P,0;X,Y,Z;¢) = Hy(P,0; XY, Z) +eV(P, 0; X, Y, Z) (1.3)
where the canonical variables P = (py, ..., pr), @ = (41, ..., qi) are vectors in B! as well
as the external parameters X = (x;,....%), ¥ = (.....»nh Z = {z,.... 71}, € is the

perturbation strength and

!
Ho(P, Qi X, Y, 2) = %*E[quf + 2Y¢qk P + zkPE]
k=1 )
= k
VIP.G:X. Y2 = Y Vi.wX.Y.Z)q g

kit =0

(1.4)

under the foliowing assumptions:

(1) V takes positive values on the unit sphere in R'.
(2) There are no rational relations between the “frequencies’ xpz, — yf = wy, i.e. the equation

in the integer unknowns (v, ...,y =v & z!
wlrzy — y3) -+ vlnz — ¥ = v, 0} =0
has only the trivial solution v, ==y = 0.

In quantum mechanics, the (Weyl) quantization of the classical Hamiltonians (1.3), (1.4)
vields a family of Schridinger operators acting in L2(R’): under the canonical quantization
rule g = G, pi > Pp for k = 1,...,1, where g, is the maximal multiplication operator
by g in L2(R!) and Py the maximal differentiation operator generated by —i%d,, the Schri-
dinger operator family T(e; X, Y, Z) quantizing H(P, Q; X, Y, Z; ¢€) is defined as follows

T XY, 2)=Ty(X, Y, 2) +€N\(P, ; X, Y, Z} (1.5
where Ty is the maximal operator in L?(R’) generated by

i
ToX, Y. 2)u = § 3 [xds + %G@Be + nBiGe + 2Bple (1.6)
k=1

and the perturbation 7; is the maximal multiplication operator generated by the function
V. These definitions make T, and V self-adjoint in L2(R'), as well as, by assumption
(1), T, {T(e) : € > 0} if defined on the maximal domain D(T5) N D(T)) (see e.g. [7,
section XII1.13]). Mereover T'(e) : € > 0 has a discrete spectrum. Assumption (2) yields
the simplicity of the spectrum of Ty and hence, by the norm resolvent continuity at ¢ = 0
proved in [8], also of {T(¢) : € > 0}, which is required to apply the adiabatic theorem of
quantum mechanics (see e.g. [9]). Hence the eigenvalues of T (¢) can be labelled by the
same quantum numbers n = (ny,...,n) :n, € N, k= 1,...,/ labelling the eigenvalues

Eo(hi,n) = (n + 1, o}k of To. :
We also recall (see e.g. [7, section XIL5]) that under the present assumptions the Ray-
leigh—Schrdinger perturbation theory for both the eigenvalues and the eigenprojections of
T (e) exists to all orders as a formal power series in ¢, and the same is true for the canonical

perturbation expansion for the Hamiltonian H(¢)., We can now formalize the main result
of the present paper.
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Proposition 1. Let H(e) and T{¢) be as above, and let assumptions (1) and (2) be fulfilled.

Then: ) -

(1) The Hannay angle 6;(7, C) admits a formal power series expansion to all orders of the
initial point 8(Z, C), the Hannay angle of Ho; namely, for any s € N, there are 2(1, C)
such that

BT, C) = 00U, C) + ek, 0. oA

s=1

(2) For any quantum number n = (x;., ..., ny) the Beny phase ¥, (C) admits a formal power
series expansion to all orders of the initial point ¥2(C); namely, for any s € N, there
are y;{n) such that

(€)= y3C) + Y vl C)e’. ' (1.8)
=1

(3) For any s € N there ;':re entire functions 7/ > ng(I; C)for j=0,...,2m(s — 1) such
that, under Bohr—Sommerfeld quantization [ = nfi

2n1(5~1} . .
v Cy= Y TI, C)tmpn- ¥ (1.9)
J=0
with :
0 0 .
Tk, C) _ RO00) =a(1,&) seN, k=1,..,1 (1.10)
Bnk BI
Remarks.

(1) (1.1), (1.9) and (1.10) yield the semiclassical asymptotics for Berry’s phase to all orders
in perturbation theory, namely

_dnm _ RO
ony g any

(L.11)
F=I
(2) The proof of the proposition is based on a straightforward adaptation to the present
situation of the quantum normal form developed in [10, 11] (see also [12, 13]) as the exact
quantization of the classical Birkhoff one. This technique essentially allows us to determine,
to all orders of perturbation theory, all cormections to the Bohr-Sommerfeld quantization
_ rule and this makes it possible to take over directly the argument of Berry valid for the
generalized harmonic oscillator recalled above.

(3) The form (1.3) is the form assumed by any smooth (parameter—dependent) Hamiltonian
system in / degrees of freedom near any stable, non-resonant equilibrium peint provided
the terms of order at-least 2m + 1 in the Taylor expansion are neglected.

(4) The quantization condition for the actions appearing in (3), implied by the quantum
normal form, is the original Bohr—Sommerfeld one, [ = n#, and not the somewhat more
familiar [ = (n 4+ 2)?: The factor é, the Maslov index, comes from the WKB counection
formula which is never used in this context.

(5) The non-resonance condition assumption (2) not only guarantees the simplicity of the
spectrum of the Schridinger operator T(e) : € 2 0, but is also necessary for the very
existence of perturbation theory, both classical and quantum, because its violation would
bring in a zero denominator.
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In the next section we will prove the ‘classical part’ of the proposition, namely part (1),
and in section 3 the ‘quantum part’ namely parts (2) and (3) will be proved.

2. Classical normal form. Perturbation expansion of Hannay’s angle

As already mentioned, the purpose of this section is to prove part (1) of proposition 1. The
main' preliminary result in this direction is the construction of a suitable normal form for
H.. To this end, let us first recall the definition of the relevant canorical variables.

(a) For any k=1,...,! the transformation C [3]

1
T Peqrs Xes Yo, ) = 3 [xeq7 +2¥eqe P + 2eP2]

@y

2.1
| % fPe, Mk
B:(Pi-Gr; Xk Vi, Z) = tan ‘[m(_+_)]
e (Pr-Gks Xk Yo 2¢) ol\a T %
is a canonical bijection between R? and IR — {0} x T, whose inverse ™! is
2z, 1,
GrlTis Brs Xy Yieo Zp) = kX cosd,
(2.2)

2z @ .
il Or,y X, Yro 2p) = —-J —-—k(& cosf + — sin 9;).
(/3 ZE Zr

The canonical variables (Z,8) = (f},..., f;;61,...,6;) are the action-angle variables for
Hy, and one has by construction

]
Ho=Y o (2.3)
k=1

(b) The well known complex canonical variables (Bargmann variables) correspending to
(£,6) are denoted by (&', 0"y =&, ..., &0t ..o D

R Y, L ) 4

They are obviously complex-conjugates; it is however useful to consider them as
independent complex variables. The expression of Hp in terms of (¢/, ) is obviously

1
Ho&' ') = endmp (2.5)
k=0

{c) The validity and the canonical character of the following transformations relating the
canonical variables (2, P) to the complex canonical variables (£’, n), and the variables

{¢', 7' to the complex canonical variables (£, 7) := (1/+/2)(Q+iP, Q—iP) (using obvious
vector notation) is immediately verifiable

_ f_z_lg_ )
qr = wk(€k+m)
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(2.6)

Pr= J——[(yk fae)er + (e + fan )]

_1 k Zk . ;— )
ol e (o

w=al (Vo v i+ (\/27- % i)l |

=7 ¢z,¢—m P Zaioe )”*

s Yol oo Ve, @k Y
e ()]

1 [z :
ne = % i [(1 +— +1—)é’k - ( =% —lzi)mz]-

i Zy 2t Zr
(d) By a standard abuse of notation, we denote by

Vg, X, Y. 2) Vi{l,0;X,Y,Z) Ve, X, Y, 2)

the potential V expressed as a function of the canonical variables (£, ), (1.6), (&', 7).
respectively, by Hy(Z, ) the Hamiltonian Hy expressed as a function of (¢, ), and therefore
by H.(1.8), HA&', 0", -H:(¢, n) the perturbed Hamiltonian when re-expressed in the

corresponding variables.
(e) We remark that Hy(Z, n) can be written in the form

o ,
Ho(g,n) =Y oG ) (2.82)
- k=1 .

where, by (2.75)

1 zpe W W )
Te (e i) “Zi—k[(1+—k -l—);k ( —JHZ&)M]
w I\ T o

x [(1 4+ +i2‘i)g - (1 _ 2 iﬁ)nk]. ' (2.85)
Z Zy Zf 2 .

We can now state the preliminary result mentioned above.
Lemma 1. 'For any N € N there is a canonical transformation x., depending

holomorphically on the canonical variables and on e, mapping H(¢’, n') into the Hamilto-
nian

K¢ n') i= Hole', n)+ZKJ(z )&l +0 (M) (2.99)

where, as above, Hg(¢', #') is defined as in (2.5) and

¢’ =@l - G- ~ : (2.99)
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Remarks.

(1) (2.9) is the normal form expressed in the canonical coordinates (¢', ). By the canonical
tfransformations (2.1), (2.2), (2.4), (2.6) and (2.7) the canonically equivalent normal forms
expressed in the canonical coordinates (1, 6) and (&, n) are written as

N
Ke(1,6) := Ho(D) + Y Ki(De/ + 0 (M) (2.102)
j=l1
N
Ke(z.n) = Hot,my+ Y _ K&, ) + 0 (™). . (2100)
j=1

In 2.10a), I = (I1,....I;) and Hp(I) is defined in (2.3). In (2.10b), I(¢,n) =
(h&, md)s---, L@, ) where L(&e, i), k=1, ..., 1 is given by (2.8b).

{2) The dependence on the external parameters X, ¥, Z is not explicitly displayed because
it is contained in the definition of the canonical variables (I, 8) and hence (&, 1), (&, 1)
(see {2.3)(2.8b)).

(3) As we will see later on, the form (2.10a) yields the expansion for Hannay’s angle by a
direct application of Berry’s argument, while the form (2.105) admits the exact quantization
yielding the quantum normal form.

Progf. The argument is, as in [11], a straightforward application of canonical perturbation
theory generated by the Lie algorithm written in the Bargmann variables, and could
be omitted; we include it here for convenience of exposition becawse the perturbative
computation of Berry’s phase is based on the exact quantization of this procedure.

The canonical perturbation theory is generated by locking for the canonical
transformation (&1, ) = x(¢'.n") such that H, o x. = K&y, €) where ¢y’ is given
by (2.9b). (Note that we keep the notation (¢’, n") to denote the ‘new’ canonical variables.)
The Lie algorithm (see e.g. [14, 15]) consists in determining x. as the flow of an auxiliary,
non-autonomous Hamiltonian w.(¢', 1) in which ¢ plays the role of ‘time’. Given any
holomorphic observable f(z’,n) on C%, and any holomorphic Hamiltonian w(’, '),
denote by t. the composition operator with x. : (& F)&', #") = (f o x)(&', #') and by
(Lo Y. 7)Y = {f, w}¢', n') the Lie derivative along the flow generated by w. The
equation to be solved is therefore

teHe= K0, €). (2.11)

We remark now that, for any holomorphic observable f we can write

d
a;f(é“', 1) = te({f, w D 1) = 1 (L Y 1)

because € is the ‘time’ and x. the flow generated by the Hamiltonian w,

d . d . ; :
EET}’ = lVg'we &f:’ = —1V,,:we (2. 12)

which takes the initial datum (&1, ;) at (£', ') at ‘“time’ ¢. Expand now w., t, K(¢'7, €)
in a (formal) power series of €

o (=0} oo
we =Y €"wep fe=_ 'ty K@, e)=> e Ket'n) (2.13)
=0

=0 £=0
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whence dz,/de = Y oo, et"1et,. Inserting (2.13) in this last equation and equating the
coefficients of the resulting powers of € we get

4
£ty = E l'g..j.cwl to =1y ‘ - (2.14)
. =

so that, expanding both sides of @. 11)
tKo+t V=K, £=12.... Ko=H( ) (2.15)

whence, by (2.14)

1 _
sH wltVe=Ke  £=12... (2.16)
1 fuu | . B
Vi=V  Vi=t V45D teiloyH  £=23,.... .17)
¢ 5

To solve these recurrent equations we look for the Taylor expénsion (in the (¢’, n’) variables)
of the unknown functions: given the Taylor expansion of V, :

Ve = Z Ven? . vi=v= Z Vaﬁg’“ o (2189
@, f=0 o, f=0

whose construction only involves w; and K; up to j = £ — 1, the coefficients of the Taylor
expansions of w, and Ke

00

Z w(!.‘) ;!W .’ﬂ R K ZK(EL;NX "0 2 (2‘131))
o, =0 o=0
~ are given by *
Vu:} ‘
ML . o _ {8)
=i—F . K7'=V, 2.18¢
RN R ' 189
where, as usual ¢, B are multi-indices, o= (e, ..., qn), }3 ={f,...,5)
‘;.fd i f’al . gmfr B, n:ﬂ: é.ra o ({Im)al s (;Irn;)w
@ = (w,...,o) and {», (# — «)) denotes the scalar product between the {-vectors @ and
o — B. Since V is a polynomial, the Taylor series (2.184,5) actually reduce to finite sums,
and the denominators never vanish by the non-resonance condition. o

Proof of proposition 1, part ({}. To apply Berry’s argument [3, equation (17)] without the
slightest change we have only to re-express the original canonical coordinates {Q, F) in
terms of the canonical coordinates (/, 8) in which H, assumes the normal form (2.10a).
We have immediately

(Q, P)=C Loy (VIe?, VIe®) = (2.19)
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where C~ is given by (2.2) and the vector notation +/Te® = (/Te, ..., /fe®) has
been used once more. Now

N
Xe(VIe®, VIeT) =Y TV sywe (V1P VTe ™) + 0 (V+) (2.20)
=1

where JV denotes the symplectic gradient. Insertion of (2.19), (2.20) into (18) of [3] yields
the result, (with the identification dA = suirface ¢lement in parameter space)

ak(1,C) —-—f W X, Y, Z)dA 2.21)
H#A=C
and

Wlli X.1,2) = —— § V20,6 X, 7. 2) A Vi zai(L, 65 K.Y, D)8

(2m)
(2.22)
where
9 . )

pil,6: X, Y, Z)= Pk(“‘ 3—-ws(\/ﬂe"’*, Ie %) X, 7, Z)

) g _ (2.23)
qi1,6; X, Y, Z) = qx (a—g—ws( Iel%, /Le ™) X, Y, z).

* O

3. Quantum normal form. Asymptotics of Berry’s phase

We now proceed to the construction of a suitable quantum normal form for the operator
family T (¢) along the lines of [11}. We first remark that, since Berry’s phase is left invariant
by any parameter-independent unitary transformation in the Hilbert space (see e.g. [3,
equation (23)]), we are free to choose the representation of the canonical commutation
rule. Therefore we will employ the Bargmann representation [16]: this is precisely
the representation in which the quantum normal form can be constructed as the exact
quantization of the classical one, written in the (¢, n) variables (equation (2.95) above).
Indeed consider for any ¢ € L2(R') the integral transform

¥(Q)dQ

2 2
Ui = F2)y = )™ fm exp[-— (z+ 0 ) f{z Q)'J

20
(3.1)

wherez-_-(zl....,z;)eC’,zz=zf+---+zf, Q2=Q%+----+q,2. U/ is a unitary map

between L?(R') and the Bargmann space JF; of all entire holomorphic functions # on C'
such that

2 !
fullr = fmu lu(z)|* exp [ - l%[—] Edzkdé'k < 400, 3.2
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It is well known that /; yields a representation of the canonical commutation rules in which
the standard creation and annihilation operators of the harmonic oscillator

1 1
= —{ —1 2, = ——{ + 1

which are nothing else than the quantization of the classical observables (£, ), act as
multiplication and differentiation operators, respectively

G =u(zy G = n—(z) : 3.3)

Equation (3.3), together with the Wey!l quantization rulc yields the canonical quantization
of any real-holomorphic classical observabie f (£, 7) as a (formally) self-adjoint operator f
in 7, which can be constructed in the following way (see e.g. [17, section 5.1-2); without
loss of generality we can assume here ! = 1)

(1) Denote by IIs{A™B”) the symmetric product of the mth and nth powers of
two non-commuting operators A and B, formally defined as the coefficient of
{(m +n)’/m’n')X"’Y" in the expansion of (AX + BY)"™, (X, ¥) e R.-

(2) Denote by &’ = ns(g;"*"") the symmetric product quantization {as a maximal operator
‘in ;) of the classical observable uZ, n) = ;™5".

(3) Then if

oo
f&.n)= 2 a8 ™"
m.n=0
its canonical (Weyl) quantization 7 is defined as ~
] . - -
F=3 fulls@m7). : (3.4
ma=0 .

Therefore, denoting by So(%), S, () and S¢h, €), respectiveiy, the unitary images in F;
under U/ of the operators Ty, Ty and T (#, €), we have

So=HE¢n S=V  Se=Hen+7. (3.52)
‘We further remark that .
SU(X Y Z) So(xl:J’],zl)®I® ®I+I®S2(x21}'2s22)® + M

+1®--® Shx, v, 2) . ‘ (3.5b)
where, fork=1,...,! -
S§ ;2 Yoo 2) = o Fe (&, ) " (35¢)

and that these operators act as the maximal differential operators in J; generated by the
differential expressions

So (A5 X0 Yoo Z) f(2e) = ﬁ(wkaaz,,)f (Z¢) (3.6a)
V(x,7,  Z)u)(z)

= Z Vet (X2 Yo DIz + 18, )% -+ (2 + 73 ) e (2)
iteth=0

(3.6b)
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where, as above (equation (1.4))

VER X2 = 3 Vi wnOOY 20+ a0k - G+ .
kbt L2m i

(3.6¢)

We now go on, following {11] to which the reader is referred for the complete details, to
the construction of the quantum normal form, i.e. of the Rayleigh-Schrdinger perturbation
theory through the ‘exact’ quantization of the classical Lie algorithm recalled above. The
first step is represented by the construction of the Rayleigh-Schridinger perturbation theory
by a procedure formally analogous to canonical perturbation theory. Once more we omit
to indicate the explicit dependence on the external parameters (X, ¥, Z) because it is not
essential in the following argument.

In Rayleigh-Schrodinger perturbation theory we want to diagonalize S(%,¢) on the
unperturbed basis by looking for a unitary operator X, such that X.S(%, €)X.! = D,
where D, commutes with $;. Denoting by We = f; W, dx the self-adjoint generator of

Xe, X, = exp(—(i/h)ﬁfs) we formally have, for any operator 4 in J;, the well known
equations

d

i

EXE = —EXEWG XO =T (3.7(1)
9y ax = Lx.ia wx! (3.7h)
de ¢ TR TN )

To generate the operator Rayleigh—Schrodinger perturbation theory we set, in the sense of
the formal power series

Q0 o

We=) Wi  XAX;'=3 &/Ta (3.8)
Jj=0 j=0
and
LyA=[A,W;]  Wo=I Ly, =0. (3.94)

Inserting (3.92) and (3.8) in (3.7b) and equating the coefficients of €* on both sides we get
i 5
z:azl:ﬂg_jm, s=1,2,..., To=1Id. (3.95)
J:
Now set A = Sp(f1) + €V and look for the (formal) power series expansion for D,
. :
D=3 ¢t (3.10)
=0

Then, once more equating the coefficients of the same powers of ¢ the requirement

X.S(h, €)X = D, easily yields, on account of (3.75), (3.8) and (3.9, %), the recurrent
equations .

Do = Sﬂ(ﬁ) TESO + ‘1}-;81 = Dg £ = I, 2, e (3.111‘1)
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namely
Elﬁ[s"’ Wi+ Se=D; £=1,2,... - (.118)
where
R . . ] ,
Vi=V= ’ Ve=T;18 — T ilbw S =2, .... ) .
1 5 ¢ e1t+m; e~ Lw, So £ (3.12)

" These equations are in tum easily solved on the orthonormal basis
{fi@in=(@y....mhne=0,1,...,k=1,....1}

of the eigenvectors of Sy
Sofo = Eo(n, b, ) f Eo(n, b, ) = Al{n, ) + L[ol].

We have indeed

s (fms Sﬁfn)
{(fns We fr) = lﬁf-—-——-——-—Eo(m) ~E) men |
{fm' [SD, Wi]fm) =0 ' (3.13)

(s Defa) = {foms Sef)omn

because Eg(m) = Eg(n) iff m = n by the simplicity of ¢(Sy) and the sums contain only
a finite number of terms since §; = Visa polynomial in the creation and destruction
operators G and p;. Therefore we can conclude that the (formal) Rayleigh—Schrodinger
perturbation theory for the eigenvalues E, (%, €) of ${#, €), and hence of T (%, €), written as

En(h,€) = Eo+ Y Eoln, h)e’ @1

exists to all orders, with

] Ee(’h h) fm Dt’fn fm Sfﬁz . . (3'15) :

We are now in position to verify part (2} of proposition '1:

Proof of proposition 1, part (2). Let us consider the perturbed eigenfunctions and examine
their explicit dependence on the external parameters (X, ¥, Z). By construction, for any
N € N we have

Ste; X, Y, Z)fN(z,h,e; X, ¥, Z)
= EN (6 X, Y. 2)fY (z.h, & X, ¥, Z) + O (e . @6

where

i iwe(x Y, Z)

e heX Y —exp[ Jf,,(z X,Y, Z). (3.16)
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In fact, since W,(X,¥, Z) is once more a polynomial in the creation and destruction
operators, the exponential is well defined on the unperturbed eigenvectors f,(z; X,Y, Z)
by Taylor expansion and this gives (3.162). Now the dependence of V, Ey(f, n) and
fo(z; X, Y, Z) on (X, ¥, Z) is obviously holomorphic; therefore the same is true for the
dependence of {f,, S fu)s {fr. Wi fm}, and, by recurrence, for the dependence of (f;, We fiu)
for £ = 2,.... Hence the approximate eigenfunctions f.¥(z,%,€; X, Y, Z) admit Taylor
expansions in powers of € with coefficients depending holomorphically on (X, Y, Z). Now,
by [3, equation (23)], the unitarity of the Bargmann transform and (3.16a,b), the phase
2-form admits the foliowing representation

Vin,e; X, Y, Z)
= InVrz [ TGN Dzl @R 6 XL DEE
RZ!
(3.160)

and this proves the assertion upon expansion in powers of €. O

Remarks.

(1) We note for further reference the following expression for the coefficients y;(n, C) of
the Rayleigh—-Schrdinger expansion of Berry’s phase in terms of V(n; €; X, ¥, Z) which
follows from (3.16¢) and [3, equation (20)]:

Y, C) = — f f V(s X, 7, Z) - dA (3.169)
dA=C

where
5

1 d
vs(n; X" Yv Z) = Im VX.Y.Z A —h—_‘flé=’0
stde®

i
X f Fr@h e X, Y, D) Ve f @b 6 X, Y, Z) [ | dzdz,.
k=1

(3.16¢)

(2) The eigenvectors f,(z) of §p are related to the standard basis vectors of JF;, defined as
n iy

en(z) = —o il n=0e, ) me=0,1,... (3.16f)

~hng! .”\/Jrhnfl

- by a unitary wansformation U(X,Y,Z) : f, = UEX. Y, Z)e,. UX, Y, Z) is the
quantization of the linear cangnical transformation (2.8), and depends holomorphically on
(X, Y, Z) (for details see [16, section 3f]).

To prove part (3) of proposition 1 we show that the quantum perturbation theory can be
realized as the exacr quantization of the classical one. By this we mean the following: the
quantum recurrent equations (3.11a,b), (3.12) can be formally obtained from the classical
ones (2.16) upon replacement of the Poisson brackets by the quantum commutators and of
the classical observables by their Weyl quantization. The replacement is formal because the
commutator of two quantized cbservables does not coincide with the guantization of their
Poisson brackets. The exact quantization consists precisely in the recursive determination
of the needed corrections.

The key preliminary result in this direction is however the verification that, for the

particular case of the free Hamiltonian, the operations of quantizing and of taking the
Poisson bracket actuaily do commute.
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Lemma 2. Let f({,n) be any holomorphic observable defined on A, f its (Weyl)

quantization, and Sy(X, Y, Z) the quantization of the free Hamiltonian Hy(¢, n; X, Y, Z)
defined in (3.8). Then

[F. So(X, ¥, Z)] = —ik{f, Hol~ X, ¥, Z)}. G.17)

Proof. We apply the explicit e.quation 11, equations (3.5), (3.6)] for the Moyal bracket of
two (Weyl) quantized operators fz m Fi comresponding to the holomorphic observables

f& 0 e, m

Fa=YTam | (3.184)
p <

where {f, g}t =0, j= 1,3,5...and

oy S : o f(@foamg
oghp =279y (=1 Y “—‘—,-Bf—"— i=0,2,....
) 5=0 ferl=j+Ts.|B1=s &g

(3.185)

Here l¢| = a1+ ---+ay, [Bl = A+ ---+ B Setting g(&,n) = H(,n X, Y, Z), by
(2.8a,b) it is immediately verified that {f, Ho(-, X. Y, Z)}m =0Vj>0. O

We can now easily adapt the recursive arguments of [11, lemmas 4,35,6] to estabhsh
the existence of a svitable quantum normal form, namely:

Lemma 3. For any € = 2,..., j = 1,...,2m{¢ — 1) there are recursively defined 7
pOIynomials (:' U) > V}E(g’ m Xv Yy Z)v (Cr 7?) e Kf((Il (éh ’TI), CERR} Is’(g'fs 7)!)); X; Y: Z),
&, ne wj &.m X, ¥, Z) of degree not exceeding 2m(£ — 1) such that

. Im(g—1) __
=V X LD+ Y. VI X, YO0 (3.19a)
i=1 '
=1 __ .
=T&.nX. L2+ Y wtCm XY, D (3.195)

j=1

Dy = Ke({Ii (21, m)s oo oo LG m)); X, Y, 2)

mie=1y
+ Z G s B ) X, Y, 2O, (3.15)
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Progf. Lemma 2 shows that the first quantum homological equation (3.115) is the exact
quantization of the corresponding classical equation (2.16), i.e. (once again we omit to
indicate the explicit dependence on the external parameters)

hl[So, Wil+ S, = Dy <= (B, w1} +V =K. (3.20)

Therefore we can repeat the arguments of [11, lemmas 4, 5,6] up to the following variants:

(1) The classical homological equation {Hp, w}+ V = K| has to be solved in the {¢’, ")
canonical coordinates, which yield a constant coefficient, first-order partial differential
equation as we have seen in the proof of lemma 1. The solution is then re-expressed in
the {£, n) variables through (2.8a,b).

(2) The same procedure shows that K, and hence by recurrence K, and also k¢ : £ > 1,
i=1,...,2m(€—1) depend on (£, n) only through 51 (51, md..... L&, m)-

) O

A consequence of this normal form is the existence of the semiclassical expansion for
any term yp,(n; C) of the Rayleigh-Schridinger expansion of Berry’s phase.

Lemma 4. For any £ € N, there exist coefficients yg(n; C):7j=0,....,2m(¢ — 1) such
that the following expansion holds

T ‘
Rrem©) = Y v/(m COW. (3.21)

=

Proof. Consider the representation (3.16d, €) of y;(n; C). By (3.16b) we have
iﬁVx_y_zan(;,h, e X, ¥, 2)
N
Wo(X.Y. 2
= (Vx.r.z > Mep) ehe X, ¥, 2).
Now apply the Baker—-Campbell-Hausdorff equation to

. N N
exp (;7 Z W,(X,Y, Z) ep) _ (Vx.iz Z Wo(X,Y, Z) Ep)

p=1 p p=1 P

. N
i W,(X.Y, 2)
cor( 5 )
=

expand the result in power series of ¢ and collect all coefficients multiplying €¢. The resuit
is

y
1
Ve(n, 2; X, Y, Z) =Im Vv z -"\Z— Z BTGy,
s=1I § kyeeefeRg =L =g

Clrends (X Vo Z) = [, [Wiys (Wi, L. [We,, Vv 2Wel. . 150).

ks (Xv Y1 Z)

{3.22a)
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Inserting s times (3.18a,5) to compute the sth commutator on account of the quantum
normal form (3.195) for W,, and hence for Vy y zW;, we eliminate the power 7%, and
each addend Gy, ; (X, Y, Z) takes the form

.....

G (XY, Z) =19 {f, Fry 2&, 1) fi) (3.22b)

for some g > 0 and some polynomial symbol Fy v, z({ 1) depending holomorphically on
(X,Y, Z). Now, by (3.16f)

..... (X, Y, Z) =B (e, U Fr y.2(5, MUey). (3.22¢)
Now, once more by [16, section 3f] (see also the discussion in [17, section 5.1.4]), since
the Hamiltonians Hy(¢, n) and Hy(¢', n”) are related through the linear canonical change
of variabies (2.7a), and the basis vectors {e,(z) : n € N U {0}] are the eigenvectors of
Sg = R{w;, V;), the canonical quantization of Hy(’,n’) in the coordinates (', 7'), the
~ operator U~ 'R x.r.z{{. MU is the quantization of the symbol F(X, ¥, 7) composed with
(2.7a), which depends holomorphically on (X, ¥, Z). Namely

U Fy .26 MU = Fyy 28" @m0/ € n); X, ¥, Z) (3.22d)

hence

..... (X, ¥, Z) = 8% (en, Fry 208" &, ) '€, )5 X, ¥, Z)ey). (3.22¢)

Now the scalar product in the RHS of this last expression is a polynomial in %, with
holomorphic dependence of the coefficients on X, ¥, Z, by a direct application of lemma 3
of (111, Therefore each addend of the equation (3.16d) for fiye(n; C) is explicitly displayed
as a polynomial in % with holomorphic dependence of the coefficients on (X, ¥, Z) and this
proves the assertion. .

To conclude the proof of proposition 1 we have to identify the coefficients yej (n; C)
 with the coefficients 1";' (nh; C) of (1.9) and to prove the relation (1.10).

Proof aof proposition 1, part (3). To prove the validity of the expansion (1.9) we have to
show that the coefficients y; J(n; €) of (3.21) depend on » and % only through the combination
rf; in turn, by (3.22) we can limit ourselves to verifying this property on the matrix elements
& (X, Y, Z). Now, once more by {11, lemma 3, equation (3.13)] we can write

.....

..... 6 (X, Y, Z) = len, Frrz@' @ ), 7', 0% X, Y, Z)e)

deg
= (Fxy2)0(Dlimmn + D_# D D™ (Fy.r.2)0(D temn (3.23)
i=l1 lel=f

where (Fx,y zJ)o(/) denotes the zero Fourier coefficient of Fyyz re-expressed in the
variables fy = {ini, 6 = argly, and D' is the differential operator introduced in [11,

equations (2.32)~(2.34)] whose definition need not to be recalled here. (3 .23) displays the
_desired dependence, and this proves (1.9).
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To conclude the proof of part (3), let us first identify the coefficient of order zero in %
in (3.21). By (3.18a,b) the term of order zero in £ in (3.22a) has the form

inVe(n, 0; X, Y, Z)

N
= (fm Z Z gy, {wey, {- .., {wr,, Vx.r.zws} .. .an)

s=1 kFothy=t~s
(3.24)

and, once more by equation (3.13) of [11], it is a polynomial in % whose term of order zero
is

PV2(n; X, Y, Z2) =ImVx yz

v
A (Z E (Wi {Wheo 4. -+ {wk,, Vv zwsh. . -})O(I)I=nfr-

s=t ky+--thy=t—12

(3.25)
On the other hand
N
Z Z fwe, s Wy {05 {Wk,. Vv, 205} ..
s=I ky+---+ky=E—s
1 g c
= E;azgh:oe e Vy rzWi {€) (3.26)

where, as above

N
wyle) = Z wke".
k=1

Now, by construction
ey y zwy(e) =Vyrzwn(l (€), 8(e), €) + O (™).

Hence the RHS of (3.26) is just the {th term of the canonical perturbation expansion for
Vx.y.zw(e) computed on the canonical coordinates (I, 8). We now remark that, on account
of the quantization condition, Iy = n#i, we have %3y, = 9,,, while, as in (2.22), (2.23), we
obtain

3 1 d

31, 71 et =0 Varzw(e) = Vxrzaid,0: X, Y, Z).

The average over @ is performed by inserting this in the RHS of (3.25). Performing the
further external differentiation with respect to (X, ¥, Z) in (3.25) we can apply without any
change the original Berry argument [3, equations (15)-(18), (28)<30)] to conclude that

iha;kV?(n; X, Y,Z2)= a,,*v,?(n; XY, Z)= 3,;,,1"?(1:, )= af(]’, ).

The argument so far exposed can be repeated without changes for all terms multiplying the
increasing powers of 7, and this remark concludes the proof of proposition 1. O



Berry’s phase, Hannay's angle and quantum normal forms 3821
4. Discussion

Berry's geometric phase connects the physical consequences of adiabatic changes to the
underlying topology in parameter space, and its importance in several areas of physics
(beyond its natural occurrence in the quantum Hall effect and in the Bohm-Aharonov
effect) is well known (see e.g. (18, 19]). The Berry phase has a natural classical counterpart,
the Hannay angle, and therefore determining if and how it reduces to Hannay’s angle in
the classical limit is an interesting problem of semiclassical analysis, first taken on by
Berry himself [3]: he established the connection formula (1.1) through Bohr-Sommerfeid
quantization in the case of the generalized harmonic oscillator (which represents the
simplest example of a one-dimensional system admitting a non-trivial topology’ in the
parameter space). The Bohr—Sommerfeld quantization, however, is applicable only to
classically integrable systems, while Hannay’s angle can also be defined for non-integrable
ones [20,21]. Hence the problem of extending (1.1) to multi-dimensional systems, which are
generically non-integrable, and even of determining the very existence of the classical limit _
of Berry’s phase is far from trivial. Existing results are therefore [imited to the integrable
case and hence very partial.

It is however well known that, under certain circumstances, non-integrable systems
which can be written as a perturbation of integrable ones, H(¢) = Hp -+ €V, admit normal
forms, i.e. classical perturbation expansion to all orders in €. Replacing H (¢} by its normal
form amounts to replacing H (¢) through a (canonically equivalent) integrable Hamiltonian
up to an error of order €™, i.e. having zero asymptotic expansion in €.” For perturbations
of harmonic oscillators, this normal form is most conveniently constructed in the complex
canonical coordinates (¢, ) = (1/v/2}Q +iP, Q —iP). This last class of systems also
admits a quantum normal form. Namely, the quantum perturbation theory, in which the
coefficient of €* is given by the exact quantization of the corresponding classical one. By this
we mean that we can recursively construct classical functions f{(Z, n) : f5(& n) = f4&. »)
such that:

{(a) The function (called the full classical symbol)
o : .
FEE, ) = FRem + ) Fre, mi!
=t

yields the quantum coefficient F upon Weyl quantization in the Bargmann
representation.
{®) The function f*(z, n) is the corresponding term of the classical expansion.

Replacing the quantum operator with its normal form amounts to replacing it with a unitarily
equivalent one which is diagonal on the unperturbed basis up to an error which has zero
asymptotic expansion in ¢ uniformly with respect to ii. Therefore if we replace the quantum
and classical Hamiltonians by their normal forms, respectively, we are reduced to comparing
a dlagonal quantum operator with an integrable classical Hamiitonian up to an error having
vanishing asymptotic expansion independently of %.

This method, if applicable, yields by construction the correct semiclassical expansion.
What has been done in this paper is to examine the relation between Berry’s phase and
Hannay’s angle within this technique, The addition to existing theory obtained here seems
to be twofold: on one side, the construction of the full semiclassical expansion of Berry’s
phase to all orders in perturbation theory for a large class of non-integrable systems, and
on the other side the adaptation of the construction of the quantum normal form to account
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for the dependence on the parameters needed to compute Berry’s phase: in particular this
requires a verification of the general fact that full symbols in perturbation theory (not only

the principal ones) related by linear canonical transformations generate unitarily equivalent
operators upon quantization.

Since the normal forms are divergent (uniformly with respect to %) the limitations of
the present result are the usual ones encountered in substituting a formal power expansion
for the exact solution. Neglecting a remainder term even with zero asymptotic expansion
in € amounts in classical mechanics to saying that, for ¢ small, all tori will be conserved
(while we know from KAM theory that some of them disappear no matter how small ¢ is
taken); in quantum mechanics this amounts to saying that for equally small ¢ all levels can
be. somehow approximated by a Bohr—Sommerfeld quantization formula plus corrections in
ascending powers of fi, while we know that some of them do not admit such approximation
no matter how small ¢ is. On the other hand the elimination of this O (¢®) error would
require a formulation of KAM theory valid uniformly with respect to #2, and to our knowledge
this problem seems to be completely open.
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